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We present measurements on a superconductingthree-dimensional, partly chaotic microwave billiard shaped
such as a small deformed cup. We analyze the statistical properties of the measured spectrum in terms of
several methods originally derived for quantum systems such as eigenvalue statistics and periodic orbits and
obtain, according to a model of Berry and Robnik@J. Phys. A17, 2413~1984!#, a mixing parameter of about
25%. In numerical simulations of the classical motion in the cup, the degree of chaoticity has been estimated.
This leads to an invariant chaotic Liouville measure of about 45%. The difference between this figure and the
mixing parameter is due to the limited accuracy of the statistical analysis, caused by both the fairly small
number of 286 resonances and the rather poor desymmetrization of the microwave cavity. Concerning the
periodic orbits of the classical system, we present a comparison with the length spectrum of the resonator and
introduce a bouncing ball formula for electromagnetic billiards.@S1063-651X~96!06008-4#

PACS number~s!: 05.45.1b, 41.20.Bt, 41.20.Jb

I. INTRODUCTION

In the past few decades the theoretical investigation of
two-dimensional Euclidian and Riemannian geometries, so-
called billiards, has led to a very fruitful discipline in non-
linear physics@1–3#. Due to the conserved energy of the
ideal particle propagating inside the billiard’s boundaries
with specular reflections on the walls, the plain billiard be-
longs to the class of Hamiltonian systems with the lowest
degree of freedom in which chaos can occur, which depends
only on the given boundary shape. Because of their simplic-
ity, two-dimensional billiards are in particular adequate to
study the behavior of the particle in the corresponding quan-
tum regime@4–6# where spectral properties are completely
described by the stationary Schro¨dinger equation

HC~rW !52
\2

2m
DC~rW !5EC~rW ! ~1!

inside the domainG with Dirichlet boundary conditions on
the walls

C~rW !u]G50. ~2!

In this context the investigation of quantum chaos has be-
come one of the most fascinating goals of theoretical physics
at the end of this century@7,8#.

About five years ago experimentalists even found very
effective techniques to simulate the quantum billiard prob-
lem with the help of macroscopic devices. Due to the equiva-
lence of the stationary Schro¨dinger equation and the classical
Helmholtz equation in two dimensions one is able to model
the billiard by a similarly shaped electromagnetic cavity
@9–11#. In former publications we have demonstrated the
high accuracy of large ensembles of measured eigenvalues as

well as of resonance shapes and the attached widths insu-
perconductingcavities formed such as desymmetrized Buni-
movich and truncated Hyperbola billiards@12–15#.

Especially the statistical analysis of measured~or numeri-
cally simulated! eigenvalue sequences confirms that a dis-
tinction between classical chaotic and regular systems from
the quantum point of view is only possible in the semiclas-
sical regime~formally spoken for\→0), where the parti-
cle’s de Broglie wavelength is sensitive to details of the bil-
liard’s borderline. One of the most surprising and primarily
empirical results of these investigations is the fact that quan-
tum spectra of classical chaotic Hamiltonian systems can be
described in a universal manner that depends only on the
global symmetry of the underlying dynamics: The quantum
pendants of time-reversal invariant classically chaotic sys-
tems typically reveal spectral structures that are reproduced
excellently by statistical properties of the Gaussian orthogo-
nal ensemble~GOE! of random matrix theory@16–18#. On
the other hand, classically regular systems usually lead to
spectral fluctuations on the wave dynamical side according
to uncorrelated Poissonlike distributed random numbers@19#.

In this article we present investigations that were per-
formed on a three-dimensional superconducting billiard. Due
to the polarization properties of the electromagnetic fields
EW andBW inside the cavity the full vectorial Helmholtz equa-
tions @20#

S D1em
v2

c0
2 DEW ~rW !50W , ~3!

S D1em
v2

c0
2 DBW ~rW !50W ~4!

have to be used with corresponding boundary conditions

EW i~rW !u]G50W , BW'~rW !u]G50W ~5!

on the walls, which are assumed to be ideally conducting. Of
course, the analogy with the corresponding scalar Schro¨-
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dinger equation in the same geometry is fully lost. Instead of
talking of the semiclassical limit we have to describe the
classical electromagnetic billiard in this region in terms of
ray-optical characteristics, where features of the periodic or-
bits inside the geometry dominate the corresponding wave
optical side.

Three-dimensional systems have so far only scarcely been
investigated experimentally. To our knowledge, the first ex-
periments with electromagnetic waves in cavities simulating
acoustic wave phenomena in rooms were performed by
Schröder@21#. Acoustic model statistics in metal blocks have
also been investigated@22,23#. Very recently statistical prop-
erties of eigenfrequency distributions in asymmetrically
shaped microwave cavities have been reported@24#. Theo-
retically quantum effects, as well as their electromagnetic
counterparts in three-dimensional systems, were treated in
Refs.@25–27#.

II. EXPERIMENT

We have investigated a small deformed three-dimensional
~3D! cavity made from an open, deep drawn niobium cup
with a welded lid to cover it. Before welding the two parts
together, the cup was deformed at its open end to destroy its
rotational symmetry. Its measures are given in Fig. 1. The
total volume of the resonator was determined by filling it
with water and measuring the additional weight, yielding a
volume of 122.561.9 cm3. The shape of the cup can be ap-
proximated by cutting a three-axial ellipsoid twice perpen-
dicular to its main axis~see also Fig. 1! and then deforming
it slightly. The microwaves were transmitted into and out of
the cavity by two small antennas in the lid. The whole reso-
nator was cooled down in helium atmosphere at a tempera-
ture of 2 K and a pressure of 38 mbar in one of the cryostats
of the superconducting Darmstadt electron linear accelerator
S-DALINAC @28# together with the accelerating structures.
With this setup we have measured microwave spectra in
transmission~antenna 1 for input and antenna 2 for output!
as well as in reflection~same antenna for excitation and de-
tection! using a Hewlett Packard network analyzer~model
HP8510B! in a frequency range between 0 and 20 GHz,
respectively.

Spectra were taken in 10-kHz steps and Fig. 2 shows an
extraction of the transmission spectrum between 15 and
20 GHz where typicalQ values of up to 105 and signal-to-

noise ratios of up to 50 dB were obtained. By comparing the
three measured spectra 286 resonances could be consistently
identified, which form the basis of all following investiga-
tions.

For an analysis of this set, however, one has to take into
account the following point: Since the geometry of the cup is
very close to one that possesses two symmetry planes (xz
andyz planes, see Fig. 1!, the given set of resonances in the
analysis is always compared to a superposition of four inde-
pendent subspectra.

III. RESULTS AND DISCUSSION

A. Density of eigenmodes

In order to derive meaningful statistical measures for the
given eigenvalue sequence it is first necessary to extract the
smooth part of the resonator’s density of eigenmodes, which
is given by the generalized electromagnetic Weyl formula
@29–32#

rsmooth~ f !5
8p

c0
3 uGu f 21const, ~6!

whereuGu denotes the volume of the cavity andf the upper

FIG. 1. Geometry of the 3D cup. The investi-
gated microwave resonator, together with its
measures~in millimeters!, is given on the left-
hand side. The model of the barrel billiard that
was used for several numerical simulations is
shown on the right-hand side. The latter has been
constructed from one-half of a three-axial ellip-
soid cut with an additional plane at distanceh
from the origin.

FIG. 2. Measured transmission spectrum in a range between 15
and 20 GHz. The ordinate shows the ratio of the output power
relative to the input power on a logarithmic scale. As can be seen
from the figure, the eigenfrequencies appear as sharp peaks with a
Q value of up to 105 and a signal-to-noise ratio of up to 50 dB.
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frequency limit of the given spectrum. The constant term
contains contributions of the surface’s curvature as well as of
the edges of the cavity. The total density of eigenmodes con-
tains, in addition, a fluctuating part

r~ f !5rsmooth~ f !1rfluc~ f !5(
i

d~ f2 f i !, ~7!

where f i denotes the eigenfrequencies of the resonances.
It is very instructive to compare Eq.~6! with the corre-

sponding expression for the three-dimensional Schro¨dinger
problem in the same geometry, i.e.,

rsmooth~ f !5
4p

c0
3 uGu f 22

p

2c0
2 u]Gu f1const. ~8!

Due to the already mentioned polarization features of the
modes, the leading term in the electromagnetic formula Eq.
~6! is twice the corresponding term in the scalar problem Eq.
~8! because of two transverse directions of polarization rela-
tive to the axis of propagation. In addition, these two polar-
izations, which are known as TM and TE modes in certain
geometries, provide linear terms in the smoothed eigenmode
density of the same magnitude but with different sign. Thus
due to cancellation there is no linear contribution in Eq.~6!,
whereas this term survives in the scalar case and is propor-
tional to the cavity’s surfaceu]Gu. Even if a clear separation
in the attached TM and TE modes is not possible in cases of
arbitrary geometries, like in the case of our cup, this linear
term vanishes for all piecewise smooth boundaries@31,32#.
The constant terms in both Eqs.~6! and ~8! are of the same
origin, i.e., the curvature of the surface and the edge angles
of the cavity.

To determine the spectral fluctuations, the smooth part of
the eigenmode density in the measured spectrum had to be
eliminated. For this we constructed from Eq.~7! the staircase
function

N~ f !5E
0

f

d f8r~ f 8!5(
i

Q~ f2 f i !5 (
i

f. f i

11 (
i

f5 f i

1

2
~9!

and obtained its fluctuating part

Nfluc~ f !5N~ f !2Nsmooth~ f !. ~10!

Since in the case of our billiard there is no analytical form
for the edge contribution of the constant term of Eq.~6! we
have fitted a third-order polynomial~without the quadratic
term! to the experimental staircase function, i.e.,

Nsmooth~ f !5V1f
31V2f1V3 . ~11!

In Fig. 3 the remaining fluctuating part of the staircase func-
tion can be seen to oscillate around zero as expected. The
fitted constant V1 corresponds to a volume of
119.360.7 cm3, which is very close to the correct value of
122.561.9 cm3. This difference in the leading term corre-
sponds to an uncertainty of 4 resonances in the measured
total spectrum@neglecting the linear and constant term in Eq.
~11!#.

B. Nearest-neighbor spacing distribution

In order to perform a statistical analysis of the given ei-
genvalue sequence independently from the special size of the
resonator, the spectrum was first unfolded, i.e., from the
measured sequence of eigenfrequencies
$ f 1 , f 2 , . . . ,f i , f i11 , . . . % the spacingsi5( f i112 f i)/ s̄ be-
tween adjacent eigenmodes was obtained by calculating the
local averages̄ from Eq. ~11!. The proper normalization of
the measured spacings of eigenmodes then yielded the de-
sired nearest-neighbor distributionP(s), i.e., the probability
for a certain spacings.

By comparingP(s) to theoretical expressions one has to
take into account, however, that the mechanically only
weakly deformed cup~Fig. 1! can, to a good approximation,
be constructed of four similar quarter cups, which separately
possess the full geometrical information of the object, in
which case the measured spectrum would be a superposition
of four independent symmetry classes, which are obtained by
permuting the boundary conditions on the cutting planes of
the quarter cup from electric to magnetic, respectively.
Hence one has to be aware of this point in the following
statistical analysis of eigenmode spacings.

Furthermore, to obtain a quantitative criterion concerning
the degree of chaoticity in the system the spectrum was ana-
lyzed in terms of statistical measures from a model of Berry
and Robnik@33#, which interpolates between the two limit-
ing cases of pure Poissonian and pure GOE behavior for
classical regular and chaotic systems, respectively. The final
essence of this model is a mixing parameterq, which is
directly related to the relative chaotic part of the invariant
Liouville measure of the underlying classical phase space in
which the motion takes place. According to the herein em-
bedded one-to-one connection between classical phase space
and eigenmode density for the two different regions of regu-
lar and chaotic motion, a comparison becomes meaningful
only for the highly excited domain of the spectrum, which is
not sufficiently covered by the frequency range up to 20 GHz
investigated here.

In the upper part of Fig. 4 the result for the nearest-
neighbor spacing distributionP(s), which describes, as al-
ready mentioned, short-range correlations between neighbor-
ing unfolded levels, is shown in the form of a histogram.
With respect to the superposition of four independent sym-
metry classes, as noted above, the model of Berry and Rob-

FIG. 3. Remaining fluctuating part of the staircase function after
the extraction of the smooth partNsmooth( f )5V1f

31V2f1V3. The
particular form of the oscillations around zero indicates that the
smooth part was described consistently.
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nik makes the following ansatz for an interpolation between
pure Poissonian and pure Gaussian characteristics:

P4,4~s,q!5e2~12q!sH 16S 12q

4 D 2erfc4SAp

2

q

4
sD

1F32~12q!

4

q

4
1

p

2 S q4D
3
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3expF2

p

4 S q4D
2

s2Gerfc3SAp

2

q

4
sD 112S q4D

2

3expF22
p

4 S q4D
2

s2Gerfc2SAp

2

q

4
sD J . ~12!

For inspection the limiting curves of a superposition of four
independent pure Poissonians (q50), which again yields
one single Poissonian, as well as of four independent GOEs
(q51) are also represented in the figure. Note that the su-
perposition results in a clear loss of linear level repulsion for
small spacings in the case of pure GOE statistics. Further-
more, there is not much distinction between Poissonian and
GOE statistics, anyhow.

It is obvious thatP(s) does not allow the determination of
the mixing parameterq with reasonable significance, since
the fluctuations in the data are larger than the difference be-
tween the given smooth curves. To be free of effects due to
the binning ofP(s) we have also calculated the cumulative
nearest-neighbor spacing distribution

I ~s!5E
0

s

P~s8!ds8. ~13!

The result is presented in Fig. 4~lower part! together with
the curves for the pure distributions, Poisson, and the four
superimposed GOE’s~labeled 43 GOE!. In this case the
measured spacings are very close to Poissonian behavior
over a large range ofs. A fit of I (s) to the data yields

q50.1660.16
0.25 where the uncertainty was determined from

analyzing different subsets of the measured data. Because of
this rather poor sensitivity other statistical measures such as
the number variance and spectral rigidity had to be applied to
the data to determineq.

C. Number variance and spectral rigidity

In order to check for long-range correlations between the
measured levels we have calculatedS2 as well asD3 statis-
tics, two measures originally introduced by Dyson and Me-
hta @16,17# for studies in equivalent fluctuations of nuclear
spectra. In this case one is interested in spectral correlations
on a scale that containsL mean level spacings. Here

S2~L !:5^@n~L !2^n~L !&#2&5^n2~L !&2L2 ~14!

represents the averaged variance of a numbern(L) of levels
belonging to an interval of lengthL on the unfolded axis
with mean^n(L)&5L. The quantityD3(L) is a smoothed
and rescaled version ofS2(L) and can be calculated from

D3~L !5
2

L4E0
L

dr~L322L2r1r 3!S2~r !. ~15!

Figure 5 shows the experimental results for these two mea-
sures as well as the fitted curve according to Berry and Rob-
nik @33# deduced from

S4,4
2 ~L,q!5SPoisson

2
„~12q!L…14SGOE

2 S q L4D , ~16!

FIG. 4. Ordinary ~upper part! and cumulative~lower part!
nearest-neighbor spacing distributions for the set of 286 measured
eigenfrequencies. In addition to the experimental histograms, the
curves for pure Poissonian as well as pure GOE characteristics are
shown.

FIG. 5. Number varianceS2 and spectral rigidityD3 for the
measured spectrum~circles!. Again the limiting curves for pure
Poissonian and Gaussian distributions are given in the figure. Up to
a certain valueLmax the S2 curve is well described by a mixing
parameterq'0.3060.30

0.20 ~dashed curve!. AboveLmax'10 the curve
shows a clear deviation which is theoretically expected because of
the finite set of eigenmodes and the finite lengths of the shortest
periodic orbits. The experimental spectral rigidityD3 is only within
its error range compatible with the mixing parameter ofS2 and
possesses a four times larger value ofLmax, as expected@35#. For a
clear representation only every second error bar is shown in the
figure.
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whereSPoisson
2 and SGOE

2 are the distributions for the pure
cases and one symmetry class. An equivalent formula is
valid for D3(L). As in the case of the nearest-neighbor spac-
ing distribution the superposition of four pure Poissonians
yields one single Poissonian, which can be directly seen
from the analytical expression

SPoisson
2 ~L !5L. ~17!

Inspecting Fig. 5, two results have to be noted. First, the
experimental number varianceS2 lies clearly between the
limiting curves of pure Poissonian and Gaussian characteris-
tics. A fit of the expression~16! to the data yields a mixing
parameter ofS2(L), q50.3060.30

0.20 which agrees within the
given error range with to theq-value derived from the cu-
mulative nearest-neighbor spacing distribution. On the other
hand, theD3(L) curve corresponds only within the given
error range of the data with this result, i.e., a deviation from
pure Poissonian behavior is basically not visible. Second, the
number varianceS2(L) clearly displays saturation above a
certain valueLmax. In fact, Berry showed@34# that a global
and universal semiclassical~or ray-optical! behavior can
only be expected betweenLmin51 and the valueL max,
which is determined, on the one hand, by the finite ensemble
of resonances, but above all by the lengths of the shortest
periodic orbits of the classical system. From Fig. 5 we find
Lmax'10 forS2. Note thatLmax of D3 is well approximated
by four timesLmax of S2 @see Eq.~15! and @35##. Using a
modification of Berry’s expression@34# for the electromag-
netic case,Lmax of D3 can be related to an average length
lmin of the shortest periodic orbits via the expression

Lmax5
3c0

lminfmax

N0

2
, ~18!

whereN0 is equal to the first termV1f
3 in Eq. ~11! and

fmax denotes the upper frequency, i.e.,fmax520 GHz. The
result islmin'0.17 m, in fair agreement with a value deduced
independently in Sec. III E below.

In addition toS2(L) andD3(L) we have also calculated
another long-range statistics: the two-level form factor
b2(t) in the corresponding time domain@35,36#, which leads
to a so-called autocorrelation hole in the case of a GOE-like
sequence. It turns out that the fluctuations inb2 due to the
small number of resonances are too large for a proper con-
clusion and even in the pure GOE case the hole is not very
pronounced due to the superposition of symmetry classes.

To summarize the statistical investigation, only the cumu-
lative nearest-neighbor spacing distributionI (s) and the
number varianceS2 lead to a significant deviation from pure
Poissonian behavior for the given set of resonances. Further-
more, the extracted mixing parameterq represents an upper
limit for the chaoticity since the assumption of a superposi-
tion of four symmetry classes in the statistical analysis in-
creases the weight of the pure GOE contribution with respect
to the desymmetrized case.

D. Classical surface of section

In order to obtain an independent estimate for the degree
of chaoticity in the system we have also performed a numeri-
cal simulation of classical motion inside the 3D cup. Follow-

ing an idea of Zaslavsky and Strauss@37#, we have approxi-
mated the resonator’s geometry by one-half of a so-called
barrel billiard, which can be obtained by cutting a three-axial
ellipsoid in two different heights perpendicular to the longest
of its axis, see also Fig. 1. Consequently, the surface of the
barrel can be described by the curve

x2

a2
1
y2

b2
1
z2

c2
51 with zP@2h,0# ~19!

and the resonator was modeled with axesa558.5/2 mm,
b567.6/2 mm, and cuts atz50 andz52h5256.1 mm.
With respect to these parameters the relative geometrical dif-
ference in the volume between the cup resonator and the
barrel billiard is about 11%.

To characterize the classical motion of a particle inside
this ‘‘half of a barrel geometry’’ a two-dimensional area pre-
serving mapping also introduced in@37# was used for creat-
ing the underlying Poincare´ surface of section. The base of
this mapping is simply a pair of a coordinate and its conju-
gated momentum (z,pz) of the particle during each reflection
on the wall. Note that the momentumupW u is normalized to
unity. Figure 6 shows the resulting patterns in phase space
after 16 000 collisions with the boundary. Because the full
ellipsoid is totally regular@38# there exists a class of trajec-

FIG. 6. Poincare´ surface of section for the classical barrel bil-
liard. The figure shows the resulting patterns for the conjugated
variables (z,pz) after 16 000 collisions with the boundary. Note that

the momentumupW u is normalized to unity. As can be seen, the phase
space is split in regular stripes and a chaotic sea. The former are
produced by a special class of stable orbits, one of which is shown
in projections in the lower box of the figure, producing one certain
strip pointed out by an arrow. These orbits do not hit the bottom of
the cup, thus they only ‘‘see’’ the regular ellipsoid.
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tories~also shown in Fig. 6! manifested by regular stripes on
the surface of section that indicate remaining regularities in-
side the cup. This is due to the fact that these trajectories do
not impact on the plane atz52h, which exactly is the rea-
son for overfocusing features of the geometry and conse-
quently the origin of chaos. The relative area of the chaotic
part of phase space, the so-called chaotic sea, was estimated
by an invariant chaotic Liouville measure ofq'45% using a
drastically increased number of about 23105 wall collisions
to get a higher accuracy. This is larger than the mixing pa-
rameter deduced fromI (s) andS2, but it has to be noted that
the applicability of the Berry-Robnik model was originally
shown to depend strongly upon reaching the semiclassical
~or ray-optical! limit, which in the two-dimensional case is
established only far beyond thousands of eigenvalues@39#.
The present case of only close to 300 eigenvalues at least
points to the correct tendency for the correspondence be-
tween the classical Liouville measure and the wave dynami-
cal mixing parameter extracted from the data.

E. Periodic orbit theory

As a final study of semiclassical features of our wave
dynamical system, we have analyzed the spectrum of classi-
cal orbit lengthl in the 3D cup, which is directly related to
the measured frequency spectrum by a Fourier transform of
the above mentioned fluctuating part of the eigenmode den-
sity @Eq. ~7!#,

r̃fluc~ l !5E
fmin

fmax
rfluc~ f !expS i 2p

c0
l f Dd f

5E
fmin

fmax
@r~ f !2rsmooth~ f !#expS i 2p

c0
l f Dd f .

~20!

Here fmin and fmax denote the borders of the measured fre-
quency range, i.e., 0 and 20 GHz. Figure 7 shows in the
upper part the valueur̃fluc( l )u2 in a range of orbit lengthsl up
to 0.5 m and in the lower part some periodic orbits obtained
from numerical simulations on the barrel billiard are pre-
sented. As can be seen from the arrows below the abscissa,
several of those orbits correspond well to the locations of
peaks in the Fourier spectrum of the data. The shortest peri-
odic orbit that bounces between the bottom and the lid has a
length of l50.1122 m, which is close to the independent
estimate of Sec. III C above. It is the so-called shortest
bouncing ball orbit in the cup.

F. 3D bouncing ball orbit

This bouncing ball orbit has been analyzed in a more
quantitative manner. Following@40#, we have calculated an
additional term of the smooth part of the staircase function
Eq. ~11!, attached to the three-dimensional bouncing ball or-
bit propagating periodically between the bottom and the lid
of the cup. Again the contributions for both polarization
classes have to be considered separately. The result for the
sum of both parts as pointed out in the Appendix is given by

Nem
BBO~X!5NTM

BBO1NTE
BBO

5
pS

2h2 S (
0,n,X

~X22n2!2
2

3
X31

1

2
X2D ,

~21!

where X5kh/p52h f /c0 and h556.1 mm, half of the
bouncing ball orbit’s length, i.e., the heigth of the cup. The
parameterS denotes the area on which this orbit exists, i.e.,
the size of the cup’s bottom. The upper part of Fig. 7 also
shows the result for the remaining length spectrum after ex-
tracting this contribution. In fact, the peak belonging to the
correct length of the bouncing ball orbit does not vanish
completely because it is due to a superposition of two adja-
cent periodic orbits, the bouncing ball orbit atl50.1122 m
and a stable periodic orbit atl50.1170 m, as seen from the
lower part of Fig. 7.

In order to verify the new electromagnetic bouncing ball
formula ~21!, independently from this result we also have
tested it using a set of'20 000 eigenmodes of a regular box.
This system is classically integrable, thus it is possible to
calculate the electromagnetic eigenfrequencies analytically.
The box also allows to study the different polarizations, TE
and TM modes, in more detail and especially their system-

FIG. 7. Length spectrum~upper part! from the Fourier trans-
formed fluctuating part of the eigenmode density of the 3D cup
~solid curve! and some numerically simulated periodic orbits for the
barrel billiard ~lower part!. The lengths of these orbits and of their
multiples are indicated by arrows below the abscissa for compari-
son with the experiment. In addition, the contribution of the 3D-
bouncing ball orbit withlBBO50.1122 m has been extracted from
the spectrum~dashed curve!. The larger arrows above the curve
indicate multiples oflBBO to guide the eye.
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atic degeneration, which directly follows from the analytical
expression for the eigenfrequencies

f u,v,w5
c0
2
AS uAD 21S vBD 21SwCD 2 ~22!

with

u,v51,2,3, . . . ; w50,1,2, . . . for TM

u,v50~ either u or v !,1,2, . . . ; w51,2,3, . . . for TE.

In order to avoid further accidental number theoretical de-
generacies the lengths of the three edgesA, B, andC were
chosen as A50.2 m, B5gA, and C5g2A, where
1/g5(A521)/2, the ratio of the golden mean. Following
Eq. ~6! we have calculated the exact smooth part of the stair-
case function for the given set of eigenfrequencies. Here the
linear term and the constant term are given analytically with-
out any free parameter. Extracting this smooth part from the
total staircase of the box@Eq. ~9!#, we obtained the fluctuat-
ing part, which is shown in the upper part of Fig. 8. The
present choice of the edgesA, B, andC yields a very clear
oscillation in this fluctuating part, which is dominated by one
certain classical bouncing ball orbit~also given in Fig. 8!.
The length of this orbitlBBO corresponds to the period of the
observed oscillationD f5c0 / lBBO5c0/2A'750 MHz. Using
the areaSBBO5BC for this certain orbit, we have calculated
the contribution that follows from Eq.~21!. This curve is
also represented in the upper part of Fig. 8 and reproduces
the data very well as it can be seen in the lower part of the
same figure where the bouncing ball contribution has been
extracted from the staircase function, i.e., where the modu-
lation ofD f is not present anymore. Note that the impressive
amplitude of the given modulation is due to the ratio
2pSBBO/ lBBO

2 5(p/2)g3'6.65 in Eq. ~21!, which is the

largest contribution in comparison to the other possible
bouncing ball orbits and also much larger than the corre-
sponding amplitude for the 3D cup,pS/(2h2)'0.45.

To perform a more obvious test of Eq.~21! we again have
calculated the Fourier spectrum, Eq.~20!, of the calculated
set of eigenfrequencies. The result is shown in Fig. 9. The
bouncing ball orbit leads to an impressive peak at a length
lBBO50.4 m. Using Eq.~21! in the same way, i.e., calculat-
ing the Fourier transformed ofNem

BBO we are able to extract
this peak without any remnant as well as contributions of its
multiples, which indicates that the orbit has been described
correctly by Eq. ~21!. Because of this result, which was
achieved successfully for several boxes of different propor-
tions, we are certain that the remaining peak in the length
spectrum of the 3D cup in Fig. 7 is due to the existence of
the stable periodic orbit of 0.1170 m length.

As an additional test of statistical measures, we have cal-
culated the nearest-neighbor spacing distribution and the

FIG. 8. Fluctuating part of the staircase function for a regular
box using the first 20 000 eigenfrequencies. In the upper part an
impressive oscillation, with periodD f'750 MHz, which is due to
the contribution of the shortest 3D-bouncing ball orbit~shown in
the inset!, can be observed. The theoretical investigation@Eq. ~21!#
resulted in the smooth curve also superimposed in the upper part of
the figure. After the extraction of this bouncing ball contribution the
oscillations around zero revealed a lower magnitude and the corre-
sponding periodD f vanished from the fluctuations~lower part!.

FIG. 9. Length spectrum for the regular box in a range between
0 and 1.6 m~solid curve!. In this presentation the discussed bounc-
ing ball orbit leads to an impressive peak atlBBO50.4 m. The
positions of its multiples are denoted by arrows in the figure. Again
the contribution of this orbit has been extracted and now the re-
maining spectrum~dashed curve! can be seen to be free of any
remnant.

FIG. 10. Nearest-neighbor spacing distribution for the regular
box. Because of the systematic degeneration of almost all TE and
TM modes, the calculation was restricted to one polarization~9978
TE modes!. Due to the fact that the system is desymmetrized by
definition, the limiting curve for the chaotic case is given by a
single GOE distribution. As expected, for the regular box the sys-
tem shows pure Poissonian characteristics.
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S2 and theD3 statistics for both polarizations of the box
separately. This yields pure Poissonian characteristics ac-
cross the whole range of spacings as expected for the given
regular system. As an example, the result for the nearest-
neighbor spacing distribution using the first 9978 TE modes
is presented in Fig. 10.

Returning to the 3D cup, for completion we have calcu-
lated the statistical measures of the short- and long-range
correlations after extraction of the bouncing ball contribu-
tion, i.e., we have reunfolded the experimental spectrum in
adding Eq.~21! to the standard Weylian Eq.~11! and re-
peated our statistical analysis. The effect is rather weak, as
can be expected because of the small amplitude of Eq.~21!
in the case of the cup. The procedure leads to a very slight
correction of theS2 and theD3 curves towards the pure
GOE limit, but its influence on the mixing parameter is much
smaller than the quoted uncertainties.

IV. CONCLUSION

In summary, we have applied several original quantum
methods such as eigenvalue statistics and periodic orbits in
the given case of a purely classical, vectorial wave phenom-
enon. Although the spectrum was checked for completeness
using the correct electromagnetic Weyl formula Eq.~11!, the
fluctuations around this mean behavior are not very sensitive
for the details of the boundary in the present case of only 286
resonances. On the other hand, the system was analyzed in
terms of periodic orbit theory. As the length spectrum of the
resonator leads to more detailed conclusions~estimations for
the saturation ofS2 andD3 via the shortest periodic orbits,
identification of classicals orbit lengths, and extraction of the
first bouncing ball orbit! this analysis proves to be a helpful
tool for investigations in the near semiclassical limit. Com-
paring the classical degree of chaoticity (qcl'0.45) with the
corresponding mixing parameter deduced from spectral sta-
tistics according to the model of Berry and Robnik, only the
cumulative nearest-neighbor spacing distributionI (s) and
the number varianceS2 significantly deviate from the pure
Poissonian behavior and show the correct tendency (q.0).
The uncertainties of the analysis are not due to fundamental
difficulties but rather a consequence of the poor desymme-
trization and the small size of the cup, yielding only 286
resonances in the accessible frequency range. Therefore, in
order to study the ‘‘three-dimensional Helmholtz chaos’’ in a
more quantitative and proper way we have already started
measurements on a precisely manufactured, fully desymme-
trized 3D Sinai billiard realized by 1/48 of a cube with a
centered sphere@26#. Besides testing the usual statistical
measures, we will especially investigate the ray-optical gen-
eralization of Gutzwiller’s quantum trace formula following
the very advanced ideas of Balian and Duplantier@32#.
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APPENDIX: THE BOUNCING BALL STAIRCASE
FUNCTION IN D DIMENSIONS

First, we construct the general contribution of a bouncing
ball orbit in aD-dimensional cavity (D . 1! to the spectral
staircase function of nonrelativistic quantum mechanics,
ND
BBO(k) with k52p f /c0, and second we apply these gen-

eral results to the electromagnetic case inD53 dimensions.
As usual, the spectral staircase function is given as the inte-
gral over the spectral densityrD

BBO(E),

ND
BBO~k!5E

0

k

dk̃rD
BBO~ k̃!

5E
0

k

dk̃
dẼ

dk̃
rD
BBO~Ẽ!5E

0

k

dk̃
\2k̃

m
rD
BBO~Ẽ!,

~A1!

wherem is the mass of the nonrelativistic particle inside the
cavity. The spectral density in turn is given by the imaginary
part of the trace of the nonrelativistic Green’s function inside
the cavity

rD
BBO~E!52 lim

e→0

1

p
Im Tr@G~E1 i e!#

52 lim
e→0

1

p
Im (

.
n~>!0

S'
~D21!

~2p!D21

3E dD21k'

1

E1 i e2
\2

2m S k'
21

n2p2

l 2 D .
~A2!

Here l is half of the total length of the bouncing ball orbit
and S'

(D21) is the size of the smallest of the two parallel
~D-1!-dimensional ‘‘surfaces’’ between which the orbit
bounces. The integern labels the modes along the bouncing
ball orbit with n.0 or n>0 for Dirichlet or Neumann
boundary conditions on the two surfaces, respectively. The
momentum component along the orbit isnp/ l . The
(D21)-dimensional momentum integration perpendicular to
the bouncing ball orbit is the free unrestricted one. The fac-
tors in front of the integral are the phase space normalization
factors in D-1 dimensions. After the insertion of Eq.~A2!
into Eq. ~A1!, the spectral staircase function reads

ND
BBO~k!5E

0

k2

d~ k̃2!
S'

~D21!

~2p!D21 (
.

n~>!0

E dVk'
~D21!

3E
0

`

dk'k'
D22dS k'

21
n2p2

l 2
2 k̃2D , ~A3!
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where*dVk'
(D21)52p (D21)/2/G„(D21)/2… is the angular in-

tegral in D-1 dimensions. In writing down Eq.~A3! we used
the relation lime→0Im(x2x02 i e)/p5d(x2x0). Now the
integrations in Eq.~A3! become simple because of thed
function. The final result for the bouncing ball orbit of a
nonrelativisitic particle inside a cavity inD.1 dimensions is
therefore

ND
BBO~k!5

S'
~D21!

GSD21

2 D ~2Ap!D21

1

D23

2
11

3 (
0

,
~<!n,kl/p

S k22 n2p2

l 2 D ~D23!/211

. ~A4!

This formula applied to two dimensions reads

N2
BBO~k!5

L

p (
0

,
~<!n,kl/p

Ak22
n2p2

l 2
, ~A5!

whereL5S'
(1) is the length perpendicular to the bouncing

ball orbit. It agrees of course with the result of Ref.@40#. The
three-dimensional expression has the form

N3
BBO~k!5

S

4p (
0

z
~<!n,kl/p

S k22 n2p2

l 2 D , ~A6!

whereS5S'
(2) denotes the plane perpendicular to the bounc-

ing ball orbit. The bouncing ball contribution in three dimen-
sions to thefluctuatingpart of the spectral staircase function
is now given by formula~A6! minus its contribution to the
Weyl or smooth part of the spectral staircase function, which
has to be subtracted in order to avoid double counting. The
smooth part follows from Eq.~A6! via the application of the
Euler-MacLaurin formula 1

2F(0)1F(1)1F(2)1

•••F(N21)1 1
2F(N)5*0

NdxF(x)1•••, where F(x)}
(k22x2p2/ l 2) and the ellipsis corresponds to the fluctuating
contribution here. Thus we have

N3
BBO,smooth~k!5

S

4p F E
0

kl/p

dxS k22 x2p2

l 2 D 7
1

2
k2G

5
Slk3

6p2 7
Sk2

8p
, ~A7!

where the last term takes into account the factor 1/2 in front
of the first termF(0) in the Euler-MacLaurin formula and
the extra mode in the Neumann case. We do not get an extra
contribution from the upper boundary, asF(N) vanishes in
the average in our case. In summary, in nonrelativistic quan-
tum mechanics, the bouncing ball contribution to the fluctu-
ating part of the spectral staircase function in a three-
dimensional cavity reads

N3
BBO, fluc~k!5

S

4p (
0

,
~<!n,

kl
p

S k22 n2p2

l 2 D2
Slk3

6p2 6
Sk2

8p
,

~A8!

where the upper signs and inequalities apply to Dirichlet
boundary conditions on the two surfaces between which the
orbit bounces, whereas the lower signs and inequalities refer
to the Neumann case. In the electromagnetic case these two
contributions correspond to the magnetic and electric bounc-
ing ball modes, respectively@see Eq.~5!#, which decouple
for modes along the bouncing ball orbit. Therefore we can
just sum both terms to get the final expression for the bounc-
ing ball contribution to the fluctuating part of the staircase
function for an electromagnetic cavity in three dimensions:

Nem
BBO, fluc~X!5

pS

2l 2 S (
0,n,X

~X22n2!2
2

3
X31

1

2
X2D ,

~A9!

with X5kl/p.
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