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Chaotic dynamics in a three-dimensional superconducting microwave billiard
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We present measurements on a supercondutiinreg-dimensionalpartly chaotic microwave billiard shaped
such as a small deformed cup. We analyze the statistical properties of the measured spectrum in terms of
several methods originally derived for quantum systems such as eigenvalue statistics and periodic orbits and
obtain, according to a model of Berry and Robhik Phys. A17, 2413(1984)], a mixing parameter of about
25%. In numerical simulations of the classical motion in the cup, the degree of chaoticity has been estimated.
This leads to an invariant chaotic Liouville measure of about 45%. The difference between this figure and the
mixing parameter is due to the limited accuracy of the statistical analysis, caused by both the fairly small
number of 286 resonances and the rather poor desymmetrization of the microwave cavity. Concerning the
periodic orbits of the classical system, we present a comparison with the length spectrum of the resonator and
introduce a bouncing ball formula for electromagnetic billiaf®&1063-651X96)06008-4

PACS numbe(s): 05.45+b, 41.20.Bt, 41.20.Jb

[. INTRODUCTION well as of resonance shapes and the attached widtks-in
perconductingcavities formed such as desymmetrized Buni-
In the past few decades the theoretical investigation ofnovich and truncated Hyperbola billiarf$2—15.
two-dimensional Euclidian and Riemannian geometries, so- Especially the statistical analysis of measu¢@dnumeri-
called billiards, has led to a very fruitful discipline in non- cally simulated eigenvalue sequences confirms that a dis-
linear physics[1-3]. Due to the conserved energy of the tinction between classical chaotic and regular systems from
ideal particle propagating inside the billiard’s boundariesthe quantum point of view is only possible in the semiclas-
with specular reflections on the walls, the plain billiard be-sical regime(formally spoken forsh—0), where the parti-
longs to the class of Hamiltonian systems with the lowesftcle’s de Broglie wavelength is sensitive to details of the bil-
degree of freedom in which chaos can occur, which dependsgard’s borderline. One of the most surprising and primarily
only on the given boundary shape. Because of their simplicempirical results of these investigations is the fact that quan-
ity, two-dimensional billiards are in particular adequate totum spectra of classical chaotic Hamiltonian systems can be
study the behavior of the particle in the corresponding quandescribed in a universal manner that depends only on the
tum regime[4—6] where spectral properties are completelyglobal symmetry of the underlying dynamics: The quantum
described by the stationary ScHinger equation pendants of time-reversal invariant classically chaotic sys-
tems typically reveal spectral structures that are reproduced
- - > excellently by statistical properties of the Gaussian orthogo-
HW (r)=—5 - AV(r)=E¥(r) (1) nal ensemblgGOE) of random matrix theorj16—1§. On
the other hand, classically regular systems usually lead to
inside the domairg with Dirichlet boundary conditions on spectral fluctuations on the wave dynamical side according
the walls to uncorrelated Poissonlike distributed random numpEs§
In this article we present investigations that were per-
‘I’(F)l[;g= 0. 2) formed on a three-dimensional superconducting billiard. Due
to the polarization properties of the electromagnetic fields
In this context the investigation of quantum chaos has beE andB inside the cavity the full vectorial Helmholtz equa-
come one of the most fascinating goals of theoretical physicgons [20]
at the end of this century7,8].

ﬁZ

About five years ago experimentalists even found very A+ »? E(N=6 3
effective techniques to simulate the quantum billiard prob- fﬂzg (N=0, &)
lem with the help of macroscopic devices. Due to the equiva-
lence of the stationary Schiimger equation and the classical w3\ ..

Helmholtz equation in two dimensions one is able to model At+eu C_S) B(r)=0 (4)

the billiard by a similarly shaped electromagnetic cavity

[9-11]. In former publications we have demonstrated thehave to be used with corresponding boundary conditions
high accuracy of large ensembles of measured eigenvalues as

Ej(Nlyg=0, B.(r)],g=0 5

"Present address: Siemens AG, Bereich Medizinische Technilgn the walls, which are assumed to be ideally conducting. Of
D-91052 Erlangen, Germany. course, the analogy with the corresponding scalar ‘Schro
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FIG. 1. Geometry of the 3D cup. The investi-
gated microwave resonator, together with its
measuregin millimeters, is given on the left-

b hand side. The model of the barrel billiard that
y was used for several numerical simulations is
a shown on the right-hand side. The latter has been
h constructed from one-half of a three-axial ellip-
X soid cut with an additional plane at distanbe
from the origin.

dinger equation in the same geometry is fully lost. Instead ofoise ratios of up to 50 dB were obtained. By comparing the
talking of the semiclassical limit we have to describe thethree measured spectra 286 resonances could be consistently
classical electromagnetic billiard in this region in terms ofidentified, which form the basis of all following investiga-
ray-optical characteristics, where features of the periodic ortions.
bits inside the geometry dominate the corresponding wave For an analysis of this set, however, one has to take into
optical side. account the following point: Since the geometry of the cup is
Three-dimensional systems have so far only scarcely beevery close to one that possesses two symmetry plaxes (
investigated experimentally. To our knowledge, the first ex-andyz planes, see Fig.)1the given set of resonances in the
periments with electromagnetic waves in cavities simulatinganalysis is always compared to a superposition of four inde-
acoustic wave phenomena in rooms were performed bpendent subspectra.
Schraler[21]. Acoustic model statistics in metal blocks have

also been investigatd@2,23. Very recently statistical prop- Il. RESULTS AND DISCUSSION
erties of eigenfrequency distributions in asymmetrically ) _
shaped microwave cavities have been repof#4]. Theo- A. Density of eigenmodes

retically quantum effects, as well as their electromagnetic |n order to derive meaningful statistical measures for the
counterparts in three-dimensional systems, were treated igiven eigenvalue sequence it is first necessary to extract the
Refs.[25-27. smooth part of the resonator’s density of eigenmodes, which
is given by the generalized electromagnetic Weyl formula
Il. EXPERIMENT [29-32

We have investigated a small deformed three-dimensional smoot T )
(3D) cavity made from an open, deep drawn niobium cup pomooNf) = ?|g|f +const, (6)
with a welded lid to cover it. Before welding the two parts 0
together, the cup was deformed at its open end to destroy itghere|g| denotes the volume of the cavity afiche upper
rotational symmetry. Its measures are given in Fig. 1. The
total volume of the resonator was determined by filling it
with water and measuring the additional weight, yielding a 0 ‘ ‘ '
volume of 122.5 1.9 cn. The shape of the cup can be ap-
proximated by cutting a three-axial ellipsoid twice perpen-
dicular to its main axigsee also Fig. fland then deforming =
it slightly. The microwaves were transmitted into and out of =2
the cavity by two small antennas in the lid. The whole reso- & —40 /u ‘ -

—204 -

nator was cooled down in helium atmosphere at a tempera- &
ture d 2 K and a pressure of 38 mbar in one of the cryostats a}”
of the superconducting Darmstadt electron linear accelerator ~ —607 i
S-DALINAC [28] together with the accelerating structures.
With this setup we have measured microwave spectra in 80 . . .
transmission(antenna 1 for input and antenna 2 for oujput 15 16 17 18 19 20
as well as in reflectiotisame antenna for excitation and de- Frequency (GHz)

tection using a Hewlett Packard network analyZemodel

HP8510B in a frequency range between 0 and 20 GHz, G, 2. Measured transmission spectrum in a range between 15
respectively. and 20 GHz. The ordinate shows the ratio of the output power

Spectra were taken in 10-kHz steps and Fig. 2 shows afelative to the input power on a logarithmic scale. As can be seen
extraction of the transmission spectrum between 15 ang¢om the figure, the eigenfrequencies appear as sharp peaks with a
20 GHz where typica values of up to 1dand signal-to-  Q value of up to 18 and a signal-to-noise ratio of up to 50 dB.
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frequency limit of the given spectrum. The constant term
contains contributions of the surface’s curvature as well as of
the edges of the cavity. The total density of eigenmodes con-
tains, in addition, a fluctuating part

p<f>=p5m°°“tf>+p“”°<f>=Z S(f—1)), (7)

wheref; denotes the eigenfrequencies of the resonances. 5 10 15 20
It is very instructive to compare Ed6) with the corre-
sponding expression for the three-dimensional Sdiniger Frequency (GHZ)

problem in the same geometry, i.e., FIG. 3. Remaining fluctuating part of the staircase function after

4 the extraction of the smooth pas™°f)=V,f3+ V,f +V;. The
psmootf(f): —7;|g|f2— lz|z9g|f+const. (8) particular form of the pscillation_s around zero indicates that the
Co 2¢; smooth part was described consistently.

Due to the already mentioned polarization features of the
modes, the leading term in the electromagnetic formula Eq.
(6) is twice the corresponding term in the scalar problem Eq. [n order to perform a statistical analysis of the given ei-
(8) because of two transverse directions of polarization relagenvalue sequence independently from the special size of the
tive to the axis of propagation. In addition, these two polar-fesonator, the spectrum was first unfolded, i.e., from the
izations, which are known as TM and TE modes in certainmeasured sequence of eigenfrequencies
geometries, provide linear terms in the smoothed eigenmodef 1.f2, ... .fi . fir1, ...} the spacings;=(f;.,—f;)/s be-
density of the same magnitude but with different sign. Thugween adjacent eigenmodes was obtained by calculating the
due to cancellation there is no linear contribution in B,  local averages from Eq. (11). The proper normalization of
whereas this term survives in the scalar case and is propoth€ measured spacings of eigenmodes then yielded the de-
tional to the cavity’s surfacgyg|. Even if a clear separation Sired nearest-neighbor distributiét(s), i.e., the probability
in the attached TM and TE modes is not possible in cases dpr a certain spacing.
arbitrary geometries, like in the case of our cup, this linear By comparingP(s) to theoretical expressions one has to
term vanishes for all piecewise smooth boundaf&s32. take into account, however, that the mechanically only
The constant terms in both Eq§) and (8) are of the same Wweakly deformed cugFig. 1) can, to a good approximation,
origin, i.e., the curvature of the surface and the edge angldge constructed of four similar quarter cups, which separately
of the cavity. possess the full geometrical information of the object, in
To determine the spectral fluctuations, the smooth part ofvhich case the measured spectrum would be a superposition
the eigenmode density in the measured spectrum had to 188 four independent symmetry classes, which are obtained by
eliminated. For this we constructed from E®) the staircase permuting the boundary conditions on the cutting planes of
function the quarter cup from electric to magnetic, respectively.
Hence one has to be aware of this point in the following
1 statistical analysis of eigenmode spacings.
1+ E 5 C) Furthermore, to obtain a quantitative criterion concerning
f2 the degree of chaoticity in the system the spectrum was ana-
lyzed in terms of statistical measures from a model of Berry

B. Nearest-neighbor spacing distribution

f
|\|<f>=foolf'p<f'>=2i O(f—f)= >,

i
f>1;

and obtained its fluctuating part and Robnik[33], which interpolates between the two limit-
ing cases of pure Poissonian and pure GOE behavior for
NUC(f)=N(f)— NSOt £), (10)  classical regular and chaotic systems, respectively. The final

essence of this model is a mixing parametgrwhich is
Since in the case of our billiard there is no analytical formdirectly related to the relative chaotic part of the invariant
for the edge contribution of the constant term of E&).we  Liouville measure of the underlying classical phase space in
have fitted a third-order polynomidivithout the quadratic which the motion takes place. According to the herein em-

term) to the experimental staircase function, i.e., bedded one-to-one connection between classical phase space
and eigenmode density for the two different regions of regu-
NSMoot £y =\/, f3+V,f+ V5. (11  lar and chaotic motion, a comparison becomes meaningful

only for the highly excited domain of the spectrum, which is
In Fig. 3 the remaining fluctuating part of the staircase funcnot sufficiently covered by the frequency range up to 20 GHz
tion can be seen to oscillate around zero as expected. Thevestigated here.
fitted constant V; corresponds to a volume of In the upper part of Fig. 4 the result for the nearest-
119.3+0.7 cn?, which is very close to the correct value of neighbor spacing distributio®(s), which describes, as al-
122.5+1.9 cn?. This difference in the leading term corre- ready mentioned, short-range correlations between neighbor-
sponds to an uncertainty of 4 resonances in the measuréag unfolded levels, is shown in the form of a histogram.
total spectrunineglecting the linear and constant term in Eq. With respect to the superposition of four independent sym-
1D]. metry classes, as noted above, the model of Berry and Rob-
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FIG. 4. Ordinary (upper parnt and cumulative(lower par} . 2 -
nearest-neighbor spacing distributions for the set of 286 measured FIG. 5. Number \_/arlancé e_md spe_ctr_gl rigidityA for the
easured spectrurttircles. Again the limiting curves for pure

eigenfrequencies. In addition to the experimental histograms, the " . ; S . . )

curves for pure Poissonian as well as pure GOE characteristics a goissonian and Gau35|an2d|str|but_|ons are given in the f|gur_e._ Up to
shown. a certain valud_maxotzrbe 3¢ curve is well described by a mixing
parameteq~0.30+ ;55 (dashed curve AboveL .~ 10 the curve
shows a clear deviation which is theoretically expected because of
Nhe finite set of eigenmodes and the finite lengths of the shortest

periodic orbits. The experimental spectral rigidty is only within

nik makes the following ansatz for an interpolation betwee
pure Poissonian and pure Gaussian characteristics:

1-q\2 \/— its error range compatible with the mixing parameter>df and
P, 4s,9)= e(lq)S[ 16( _q> erfc4< T gs) possesses a four times larger valué_gf,, as expectefi35]. For a
’ 4 2 4 clear representation only every second error bar is shown in the
3 figure.
(1-q)q =(q
+| 32 —+ =|—| 4s 025 ) .
4 4 214 q=0.16+ 372 where the uncertainty was determined from
2 - 2 analyzing different subsets of the measured data. Because of
Xexr{ - 2(9) 2 erfc"’(_ﬂ- 93 +12 9) this rather poor sensitivity other statistical measures such as
4\4 2 4 4 the number variance and spectral rigidity had to be applied to
the data to determing.
xexg —22 |2 252 erfc? ﬁﬂs (12) "
4\4 2 4 '

C. Number variance and spectral rigidity

For inspection the limiting curves of a superposition of four ~ In order to check for long-range correlations between the
independent pure Poissoniang=(0), which again yields Mmeasured levels we have calculat®tias well asA 5 statis-

one single Poissonian, as well as of four independent GOE#CS, two measures originally introduced by Dyson and Me-
(g=1) are also represented in the figure. Note that the sybta [16,17) for studies in equivalent fluctuations of nuclear
perposition results in a clear loss of linear level repulsion forspectra. In this case one is interested in spectral correlations
small spacings in the case of pure GOE statistics. Furthelon & scale that contairls mean level spacings. Here
ggrg,sir;?irseti;!n;);yrﬂg@h distinction between Poissonian and S2(L):=([n(L)—(n(L)Y D =(n(L))-L2  (14)

It is obvious thatP(s) does not allow the determination of
the mixing parameteq with reasonable significance, since
the fluctuations in the data are larger than the difference b
tween the given smooth curves. To be free of effects due t
the binning ofP(s) we have also calculated the cumulative
nearest-neighbor spacing distribution

represents the averaged variance of a numipej of levels
égelonging to an interval of length on the unfolded axis
with mean(n(L))=L. The quantityA;(L) is a smoothed
and rescaled version &?(L) and can be calculated from

2 (L
. A3(|_)=Ffodr(L3—2L2r+r3)22(r). (15)
I(s)=f P(s")ds'. (13
° Figure 5 shows the experimental results for these two mea-
The result is presented in Fig. fbwer pari together with ~ SUres as well as the fitted curve according to Berry and Rob-
the curves for the pure distributions, Poisson, and the foufik [33] deduced from
superimposed GOE'slabeled 4< GOE). In this case the

measured spacings are very close to Poissonian behavior 2 52 _ 1452 ( E)
over a large range of. A fit of 1(s) to the data yields 224L,0)=2pgissof (1 - L) +4250g 5|, (16)
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where 33 ;..onand 23 are the distributions for the pure

cases and one symmetry class. An equivalent formula is 10 Tm o T T
valid for A3(L). As in the case of the nearest-neighbor spac- :
ing distribution the superposition of four pure Poissonians
yields one single Poissonian, which can be directly seen 45 ...~
from the analytical expression T

S Zoissof L) =L. (17)

Inspecting Fig. 5, two results have to be noted. First, the .
experimental number varianc®? lies clearly between the
limiting curves of pure Poissonian and Gaussian characteris-
tics. A fit of the expressioril6) to the data yields a mixing
parameter oB?(L), q=0.30+ $-2) which agrees within the
given error range with to thg-value derived from the cu-
mulative nearest-neighbor spacing distribution. On the other
hand, theA;(L) curve corresponds only within the given
error range of the data with this result, i.e., a deviation from
pure Poissonian behavior is basically not visible. Second, the
number variance& ?(L) clearly displays saturation above a
certain valuel .. In fact, Berry showed34] that a global

and universal semiclassicdbr ray-optical behavior can

only be expected betweeh,,;,=1 and the valuel .,
which is determined, on the one hand, by the finite ensemble
of resonances, but above all by the lengths of the shortest
periodic orbits of the classical system. From Fig. 5 we find

L max=10 for 32. Note thatL ., of A3 is well approximated FIG. 6. Poincaresurface of section for the classical barrel bil-
by four timesL ., of 32 [see Eq.(15) and[35]]. Using a liard. The figure shows the resulting patterns for the conjugated
modification of Berry’s expressiof84] for the electromag- Variables ¢.p,) i\fter 16 000 collisions with the boundary. Note that
netic casel .« Of A3 can be related to an average lengththe momentunip| is normalized to unity. As can be seen, the phase

y

| min O the shortest periodic orbits via the expression space is split in regular stripes and a chaotic sea. The former are
produced by a special class of stable orbits, one of which is shown

3cp N in projections in the lower box of the figure, producing one certain

Lmax:m?a (18 strip pointed out by an arrow. These orbits do not hit the bottom of

the cup, thus they only “see” the regular ellipsoid.

where N, is equal to the first termv/,f2 in Eq. (11) and
fmax denotes the upper frequency, i.€,,=20 GHz. The ing an idea of Zaslavsky and Stray8¥], we have approxi-
result isl ni,=~0.17 m, in fair agreement with a value deducedmated the resonator’s geometry by one-half of a so-called
independently in Sec. Il E below. barrel billiard, which can be obtained by cutting a three-axial

In addition to2?(L) andAz(L) we have also calculated ellipsoid in two different heights perpendicular to the longest
another long-range statistics: the two-level form factorof its axis, see also Fig. 1. Consequently, the surface of the
b,(t) in the corresponding time domdji5,36, which leads barrel can be described by the curve
to a so-called autocorrelation hole in the case of a GOE-like
sequence. It turns out that the fluctuationsbindue to the
small number of resonances are too large for a proper con-
clusion and even in the pure GOE case the hole is not very

pronounced due to the superposition of symmetry classes. ;.4 the resonator was modeled with axes58.5/2 mm
To summarize the statistical investigation, only the CUMUy,— 67 6/2 mm. and cuts @=0 andz=—h=—56.1 mm.’

lative neargst—neizghbor spa(:_ing .distributi¢(§) and the it respect to these parameters the relative geometrical dif-
numberyananc@ ' lead to as]gnlflcant deviation from pure torence in the volume between the cup resonator and the
Poissonian behavior for the given set of resonances. Furtheg, .ol pilliard is about 11%.

more, the extracted mixing parametgrepresents an UppPer 1 characterize the classical motion of a particle inside

limit for the chaoticity since the assumption of a superposi+his “half of a barrel geometry” a two-dimensional area pre-

tion of four symmetry classes in the statistical analysis i”'serving mapping also introduced [87] was used for creat-

creases the weight of the pure GOE contribution with respegj,q the underlying Poincarsurface of section. The base of
to the desymmetrized case. this mapping is simply a pair of a coordinate and its conju-
gated momentumz(p,) of the particle during each reflection

on the wall. Note that the momentufp| is normalized to

In order to obtain an independent estimate for the degreanity. Figure 6 shows the resulting patterns in phase space
of chaoticity in the system we have also performed a numeriafter 16 000 collisions with the boundary. Because the full
cal simulation of classical motion inside the 3D cup. Follow- ellipsoid is totally regulaf38] there exists a class of trajec-

N

2 Z2
?=1 with ze[—h,0] (29

+i5+

QJN|><
CT|‘<
N

D. Classical surface of section
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tories(also shown in Fig. Bmanifested by regular stripes on
the surface of section that indicate remaining regularities in-
side the cup. This is due to the fact that these trajectories do
not impact on the plane at=—h, which exactly is the rea- «
son for overfocusing features of the geometry and conse- =
quently the origin of chaos. The relative area of the chaotic E/ 1000
part of phase space, the so-called chaotic sea, was estimatedy,
by an invariant chaotic Liouville measure @f~45% using a - &'
drastically increased number of abouk 20° wall collisions ]
to get a higher accuracy. This is larger than the mixing pa- TERE 10T TN 1T TWH
rameter deduced from(s) and3 2, but it has to be noted that e b L
e . - 0.1 0.2 0.3 0.4 0.5
the applicability of the Berry-Robnik model was originally Orbit length 1 (m)
?hown to dep;end strongly upon reaching the semiclassical i it o102
or ray-optical limit, which in the two-dimensional case is e -, g
established only far beyond thousands of eigenvalG8 Q m m @ D D <D D D
The present case of only close to 300 eigenvalues at least
points to the correct tendency for the correspondence be- 1=0.1498m 1=0.1581m 1=0.1638m

tween the classical Liouville measure and the wave dynami- @ @ [D @ m @ @ D D

cal mixing parameter extracted from the data.

2000 T

—— with 3D bbo

1500 | e without 3D bbo

I B A A

500

LA L L L B L I

o

1=0.2342m 1=0.2532m 1=0.3616m

E. Periodic orbit theory @ @ [D @ @ m @ @ m

As a final study of semiclassical features of our wave 120.4068m 120 4636m 1=05505m
dynamical system, we have analyzed the spectrum of classi- @ @
cal orbit lengthl in the 3D cup, which is directly related to D @ @ m m @
the measured frequency spectrum by a Fourier transform of

the above mentioned fluctuating part of the eigenmode den-
sity [Eq. (7)], FIG. 7. Length spectrunfupper park from the Fourier trans-

formed fluctuating part of the eigenmode density of the 3D cup
~ f max . 2w (solid curve and some numerically simulated periodic orbits for the
p ()= f p(fexy i C—|f df barrel billiard (lower parj. The lengths of these orbits and of their
Fmin 0 multiples are indicated by arrows below the abscissa for compari-

frmax 20 son with the experiment. In addition, the contribution of the 3D-
:f [p(f)—psmo"”(f)]ex;{ [ —If)df. bouncing ball orbit withlggo=0.1122 m has been extracted from
fmin Co the spectrum(dashed curve The larger arrows above the curve

(20) indicate multiples of gz to guide the eye.

NEC(X) = VB0 NEE°
Here f i, and f ., denote the borders of the measured fre-

guency range, i.e., 0 and 20 GHz. Figure 7 shows in the :T’_S E (xz_nz)_EX3+ EXZ
upper part the valufp™°(1)|? in a range of orbit lengthsup 2h? 3 27 )
to 0.5 m and in the lower part some periodic orbits obtained 21)
from numerical simulations on the barrel billiard are pre-

sented. As can be seen from the arrows below the abscisSghere Xx=kh/m=2hf/c, and h=56.1 mm, half of the

several of those orbits correspond well to the locations OBouncing ball orbit's length, i.e., the heigth of the cup. The
peaks in the Fourier spectrum of the data. The shortest perlarametesS denotes the area on which this orbit exists, i.e.,
odic orbit that bounces between the bottom and the lid has g¢ size of the cup’s bottom. The upper part of Fig. 7 also
length of 1=0.1122 m, which is close to the independentghoys the result for the remaining length spectrum after ex-
estimate of Sec. IllC above. It is the so-called shortestracting this contribution. In fact, the peak belonging to the
bouncing ball orbit in the cup. correct length of the bouncing ball orbit does not vanish
completely because it is due to a superposition of two adja-
cent periodic orbits, the bouncing ball orbitlat 0.1122 m
and a stable periodic orbit &0.1170 m, as seen from the
This bouncing ball orbit has been analyzed in a mordower part of Fig. 7.
guantitative manner. Followinf#0], we have calculated an In order to verify the new electromagnetic bouncing ball
additional term of the smooth part of the staircase functiorformula (21), independently from this result we also have
Eqg. (11), attached to the three-dimensional bouncing ball ortested it using a set of 20 000 eigenmodes of a regular box.
bit propagating periodically between the bottom and the lidThis system is classically integrable, thus it is possible to
of the cup. Again the contributions for both polarization calculate the electromagnetic eigenfrequencies analytically.
classes have to be considered separately. The result for tide box also allows to study the different polarizations, TE
sum of both parts as pointed out in the Appendix is given byand TM modes, in more detail and especially their system-

0<n<X

F. 3D bouncing ball orbit
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F GH .
requency (GHz) FIG. 9. Length spectrum for the regular box in a range between

0 and 1.6 m(solid curve. In this presentation the discussed bounc-
H]g ball orbit leads to an impressive peak lgko=0.4 m. The
positions of its multiples are denoted by arrows in the figure. Again
the contribution of this orbit has been extracted and now the re-

maining spectrun(dashed curjecan be seen to be free of any

FIG. 8. Fluctuating part of the staircase function for a regular
box using the first 20 000 eigenfrequencies. In the upper part a
impressive oscillation, with period f~750 MHz, which is due to
the contribution of the shortest 3D-bouncing ball ortshown in
the inset, can be observed. The theoretical investigafigg. (21)]
resulted in the smooth curve also superimposed in the upper part ggmnant.
the figure. After the extraction of this bouncing ball contribution the
oscillations around zero revealed a lower magnitude and the corrdargest contribution in comparison to the other possible
sponding period\f vanished from the fluctuationgwer parj. bouncing ball orbits and also much larger than the corre-

sponding amplitude for the 3D cup;S/(2h?)~0.45.
atic degeneration, which directly follows from the analytical  To perform a more obvious test of E@1) we again have
expression for the eigenfrequencies calculated the Fourier spectrum, EGQ), of the calculated
set of eigenfrequencies. The result is shown in Fig. 9. The

f :@\/<5>2+(2 2+(ﬂ)2 22) bouncing ball orbit leads to an impressive peak at a length

uo,W 9 A B C lggo=0.4 m. Using Eq(21) in the same way, i.e., calculat-

ing the Fourier transformed df25° we are able to extract
with this peak without any remnant as well as contributions of its
multiples, which indicates that the orbit has been described

uv=123...; w=0137... forT™ correctly by Eq.(21). Because of this result, which was
achieved successfully for several boxes of different propor-
u,v=0( eitheruorv),1,2...; w=123... forTE. tions, we are certain that the remaining peak in the length

) . ) spectrum of the 3D cup in Fig. 7 is due to the existence of
In order to avoid further accidental number theoretical dene stable periodic orbit of 0.1170 m length.

generacies the lengths of the three edge8, andC were As an additional test of statistical measures, we have cal-

chosen asA=0.2 m, B=yA, and C=»?A, where cylated the nearest-neighbor spacing distribution and the
1/y=(y5—1)/2, the ratio of the golden mean. Following
Eq. (6) we have calculated the exact smooth part of the stair-

case function for the given set of eigenfrequencies. Here the O PSR
linear term and the constant term are given analytically with- s ]
. . 08 [~ 3
out any free parameter. Extracting this smooth part from the C E 7
total staircase of the b@Eq. (9)], we obtained the fluctuat- - E
ing part, which is shown in the upper part of Fig. 8. The 06 C (9978 TE modes) ]
present choice of the edgés B, andC yields a very clear A C ]
o . =7 : 04 3
oscillation in this fluctuating part, which is dominated by one C ]
certain classical bouncing ball orbialso given in Fig. 8 0.2 E GOE B
The length of this orbitggg corresponds to the period of the T ]
observed oscillatiot f = ¢/l ggo= Co/2A~ 750 MHz. Using 00 Po i Ll .
the areaSggo=BC for this certain orbit, we have calculated 0.0 0.5 1.0 1.5 2.0 2.5 3.0
the contribution that follows from Eq21). This curve is s

also represented in th.e upper part OT Fig. 8 and reproduces FIG. 10. Nearest-neighbor spacing distribution for the regular
the dat_a very well as it can be_ seen in the _Iow_er part of th%ox. Because of the systematic degeneration of almost all TE and
same figure where the_ bouncing _ball (_:ontrlbutlon has beeg, modes, the calculation was restricted to one polariza$@78
extracted from the staircase function, i.e., where the modurg moges. Due to the fact that the system is desymmetrized by
lation of Af is not present anymore. Note that the impressiveyefinition, the limiting curve for the chaotic case is given by a
amplitude of the given modulation is due to the ratiosingle GOE distribution. As expected, for the regular box the sys-
2mSggo/l3a0=(7/2)y*~6.65 in Eq.(21), which is the tem shows pure Poissonian characteristics.
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32 and theAj statistics for both polarizations of the box Bundesministerium fuBildung und Forschung under Con-
separately. This yields pure Poissonian characteristics a¢ract No. 06DA665I, and through a Max-Planck-
cross the whole range of spacings as expected for the giveforschungspreis.

regular system. As an example, the result for the nearest-
neighbor spacing distribution using the first 9978 TE modes
is presented in Fig. 10.

Returning to the 3D cup, for completion we have calcu-
lated the statistical measures of the short- and long-range First, we construct the general contribution of a bouncing
correlations after extraction of the bouncing ball contribu-ball orbit in aD-dimensional cavity D > 1) to the spectral
tion, i.e., we have reunfolded the experimental spectrum istaircase function of nonrelativistic quantum mechanics,
adding Eq.(21) to the standard Weylian Eq1l) and re-  NB®9(k) with k=2mf/c,, and second we apply these gen-
peated our statistical analysis. The effect is rather weak, agral results to the electromagnetic cas®in 3 dimensions.

can be expected because of the small amplitude of .  As usual, the spectral staircase function is given as the inte-
in the case of the cup. The procedure leads to a very slighfra| over the spectral densipEe°(E),

correction of theX? and theA; curves towards the pure
GOE limit, but its influence on the mixing parameter is much

APPENDIX: THE BOUNCING BALL STAIRCASE
FUNCTION IN D DIMENSIONS

k ~ ~
smaller than the guoted uncertainties. NgBo(k): fo dkprO(k)
IV. CONCLUSION k ~dE - k %2k -
_ . = f dk—=pp (E)= f dk—pp°2(E),
In summary, we have applied several original quantum o dk 0 m

methods such as eigenvalue statistics and periodic orbits in
the given case of a purely classical, vectorial wave phenom-
enon. Although the spectrum was checked for completeness _ N C
using the correct electromagnetic Weyl formula Ext), the wherem is the mass of the nonrelativistic particle inside the
fluctuations around this mean behavior are not very sensitivEaV'V: The spectral density in turn is given Py the Imaginary
for the details of the boundary in the present case of only ogPart of t_he trace of the nonrelativistic Green'’s function inside
resonances. On the other hand, the system was analyzedtrhe cavity

terms of periodic orbit theory. As the length spectrum of the

(A1)

resonator leads to more detailed conclusi@stimations for e .

the saturation oB? and A5 via the shortest periodic orbits, o (B)= —llir:);Im TMG(E+ie)]

identification of classicals orbit lengths, and extraction of the

first bouncing ball orbit this analysis proves to be a helpful 1 sP-v

tool for investigations in the near semiclassical limit. Com- == |Im;|m E (2mP-1

paring the classical degree of chaoticity,t0.45) with the 0 né)o

corresponding mixing parameter deduced from spectral sta-

tistics according to the model of Berry and Robnik, only the XJ dP-1k, , 1 —
cumulative nearest-neighbor spacing distributidqis) and . , n°m
the number varianc&? significantly deviate from the pure Etie- ﬁ( ki + |_2)

Poissonian behavior and show the correct tendency().
The uncertainties of the analysis are not due to fundamental
difficulties but rather a consequence of the poor desymme- . , )
trization and the small size of the cup, yielding only 286 Herel is half of the total length of the bouncing ball orbit
resonances in the accessible frequency range. Therefore, ad SI° V) is the size of the smallest of the two parallel
order to study the “three-dimensional Helmholtz chaos” in a(D-1)-dimensional *“surfaces” between which the orbit
more quantitative and proper way we have already startefounces. The integer labels the modes along the bouncing
measurements on a precisely manufactured, fully desymmdall orbit with n>0 or n=0 for Dirichlet or Neumann
trized 3D Sinai billiard realized by 1/48 of a cube with a boundary conditions on the two surfaces, respectively. The
centered spherg26]. Besides testing the usual statistical momentum component along the orbit is7/l. The
measures, we will especially investigate the ray-optical gen¢D — 1)-dimensional momentum integration perpendicular to
eralization of Gutzwiller's quantum trace formula following the bouncing ball orbit is the free unrestricted one. The fac-
the very advanced ideas of Balian and Duplarits]. tors in front of the integral are the phase space normalization

factors in D-1 dimensions. After the insertion of E¢A2)

into Eq. (A1), the spectral staircase function reads

(A2)
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wherefdQ(k?‘l)zZW(D*”’Z/F((D— 1)/2) is the angular in-  ---F(N—1)+ 3F(N)=fNdxF(x)+---, where F(x)
tegral in D-1 dimensions. In writing down EGA3) we used (k?—x?m%/1%) and the ellipsis corresponds to the fluctuating
the relation lim_glm(x—Xo—ie)/m=8(x—xo). Now the contribution here. Thus we have

integrations in Eq.A3) become simple because of tlf& S [ (ki 22\ 1
function. The final result for the bouncing ball orbit of a NEBO-smootf ) — yp J dx( k2— —2—) I—kz}
nonrelativisitic particle inside a cavity ib>1 dimensions is
therefore Sl sk
BBO s 1 677 "8’ "
Np™ (k)= D-1 D-3 where the last term takes into account the factor 1/2 in front
F(T)(Z\/;)D_l — 1 of the first termF(0) in the Euler-MacLaurin formula and
the extra mode in the Neumann case. We do not get an extra
n2m2\ (b=3)2+1 contribution from the upper boundary, B§N) vanishes in
X E (kz— _IZ_) (A4) the average in our case. In summary, in nonrelativistic quan-
0<Z)n<kl/w tum mechanics, the bouncing ball contribution to the fluctu-
ating part of the spectral staircase function in a three-
This formula applied to two dimensions reads dimensional cavity reads
L n2 g2 BBO. fluc |\ _ O 2 nzwz) SIK’ +Sk2
NEBO(k)ZE <2 \ K- [z (A5) N3 =27 <2 ki (k 12 62 8w’
O(=)n<kl/m 0=)n<+

(A8)

where the upper signs and inequalities apply to Dirichlet
boundary conditions on the two surfaces between which the
orbit bounces, whereas the lower signs and inequalities refer
2 2 to the Neumann case. In the electromagnetic case these two
n - : .
( 2_ ) , (A6) contributions correspond to the magnetic and electric bounc-
ing ball modes, respectivelysee Eq.(5)], which decouple
for modes along the bouncing ball orbit. Therefore we can
whereS=S{? denotes the plane perpendicular to the bouncdUSt Sum both terms to get the final expression for the bounc-
ing ball orbit. The bouncing ball contribution in three dimen- N9 ball contribution to the fluctuating part of the staircase
sions to thefluctuatingpart of the spectral staircase function function for an electromagnetic cavity in three dimensions:
is now given by formula/A6) minus its contribution to the TS 2 1
Weyl or smooth part of the spectral staircase function, which  Ne22 UG(X) = 512 > (X2—n?)- §X3+ EXZ :
has to be subtracted in order to avoid double counting. The O=n=x

WhereL=S(Ll) is the length perpendicular to the bouncing
ball orbit. It agrees of course with the result of Ref0]. The
three-dimensional expression has the form

S
NSO =7— X

z
0(Z)n<kl/m

|2

smooth part follows from EqLA6) via the application of the (A9)

Euler-MacLaurin formula IF(0)+F(1)+F(2)+ with X=kl/.
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